Problems	Prof. Peter Koepke
Series 11	Dr. Philipp Schlicht

Set theory - Winter semester 2016-17

Problem 41 (4 points). Suppose that the following strong form of the *singular* cardinal hypothesis SCH holds: for every singular cardinal λ with $2^{\operatorname{cof}(\lambda)} < \lambda$, $2^{\lambda} = \lambda^{+}$ holds. Determine 2^{κ} for all singular cardinals κ .

Problem 42 (6 points). Suppose that κ is an uncountable limit cardinal. Prove that the following sets have the same size.

- (1) $\kappa^{\operatorname{cof}(\kappa)}$.
- (2) The set of all cofinal functions $f: cof(\kappa) \to \kappa$.
- (3) The set of all strictly increasing cofinal functions $f: cof(\kappa) \to \kappa$.
- (4) $\prod_{i < cof(\kappa)} g(i)$, where $g: cof(\kappa) \to Card \cap \kappa$ is any strictly increasing cofinal function.

Problem 43 (6 points). Suppose that S is a stationary subset of ω_1 . Prove for all ordinals $\beta < \omega_1$ by induction that the set S_β of all $\gamma \in S$ with the following property is stationary:

For all $\alpha < \gamma$, there is a closed subset C of S with $\min(C) \ge \alpha$, $\operatorname{otp}(C) = \beta + 1$, and $\sup(C) = \gamma$.

(*Hint: work with the club* $\bigcap_{\alpha < \beta} \lim(S_{\alpha})$, where $\lim(A)$ denotes the set of limit points below ω_1 of a set $A \subseteq \omega_1$.)

Problem 44 (4 points). Suppose that $\kappa \leq \lambda$ are regular uncountable cardinals and let $P_{\kappa}(\lambda) = \{x \subseteq \lambda \mid \text{card}(x) < \kappa\}.$

- (a) A subset F of $P_{\kappa}(\lambda)$ is a filter on $P_{\kappa}(\lambda)$ if it satisfies the conditions in Definition 76.
- (b) If F is a filter on $P_{\kappa}(\lambda)$, the set F^+ of F-positive sets is defined as $F^+ = \{x \in P_{\kappa}(\lambda) \mid \forall y \in F \ x \cap y \neq \emptyset\}.$
- (c) A function $f: D \to \lambda$ with $D \subseteq P_{\kappa}(\lambda)$ is called *regressive* if $f(x) \in x$ for all $x \in D$.

Suppose that for every sequence $\langle X_i \mid i < \lambda \rangle$ of elements of F,

$$\sum_{i<\lambda} X_i \coloneqq \{x \in P_{\kappa}(\lambda) \mid x \in \bigcap_{\alpha \in x} X_{\alpha})\} \in F.$$

Prove that for every $D \in F^+$ and regressive function $f: D \to \lambda$, there is a subset $E \in F^+$ of D such that f is constant on E.

Due Friday, January 20, before the lecture.